Anisotropic Wavelet-Based Image Nearness Measure
نویسندگان
چکیده
The problem considered in this article is how to solve the image correspondence problem in cases where it is important to measure changes in the contour, position, and spatial orientation of bounded regions. This article introduces a computational intelligence approach to the solution of this problem with anisotropic (direction dependent) wavelets and a tolerance near set approach to detecting similarities in pairs of images. Near sets are a recent generalization of rough sets introduced by Z. Pawlak during the early 1980s. Near sets resulted from a study of the perceptual basis for rough sets. Pairs of sets containing objects with similar descriptions are known as near sets. The proposed wavelet-based image nearness measure is compared with F. Hausdorff and P. Mahalanobis image distance measures. The results of three wavelet-based image resemblance measures for several well-known images, are given. A direct benefit of this research is an effective means of grouping together (classifying) images that correspond to each other relative to minuscule similarities in the contour, position, and spatial orientation of bounded regions in the images, especially in videos containing image sequences showing varied object movements. The contribution of this article is the introduction of an anisotropic wavelet-based measure of image resemblance using a near set approach.
منابع مشابه
Survey Paper on Image Denoising Using Spatial Statistic son Pixel
The classical non-local means image denoising approach, the value of a pixel is determined based on the weighted average of other pixels, where the weights are determined based on a fixed isotropic ally weighted similarity function between the local neighbourhoods. It is demonstrate that noticeably improved perceptual quality can be achieved through the use of adaptive anisotropic ally weighted...
متن کاملImage Denoising Using Wavelet Embedded Anisotropic Diffusion (wead)
In this paper a PDE based hybrid method for image denoising is introduced. The method is a bi-stage filter with anisotropic diffusion followed by wavelet based bayesian shrinkage. Here efficient denoising is achieved by reducing the convergence time of anisotropic diffusion. As the convergence time decreases, image blurring can be restricted and will produce a better denoised image than anisotr...
متن کاملShearlet-Based Adaptive Noise Reduction in CT Images
The noise in reconstructed slices of X-ray Computed Tomography (CT) is of unknown distribution, non-stationary, oriented and difficult to distinguish from main structural information. This requires the development of special post-processing methods based on the local statistical evaluation of the noise component. This paper presents an adaptive method of reducing noise in CT images employing th...
متن کاملImage Segmentation Based on Anisotropic Wavelet Transform
A new method based on directional wavelet transform and the watershed method is proposed for the segmentation of image. In this paper, more attention is paid for the efficient extraction and representation of feature associated with pixel and their classification. In order to achieve the better representation of image contents anisotropic wavelet transform is utilized. Segmented image is obtain...
متن کاملWeighted Non-Linear Diffusion Filtering with Wavelet Thresholding in Image Denoising
Wavelet based image denoising is an important technique in the area of image noise reduction. In this paper, a new adaptive wavelet based image denoising algorithm in the presence of Gaussian noise is developed. In the existing wavelet thresholding methods, the final noise reduced image has limited improvement. It is due to keeping the approximate wavelet coefficients unchanged. Since noise aff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Computational Intelligence Systems
دوره 2 شماره
صفحات -
تاریخ انتشار 2009